

Features Edges

Andrea Torsello DAIS Università Ca' Foscari via Torino 155, 30172 Mestre (VE)

What is a Feature?

• Local, meaningful, detectable parts of the image

Features in Computer Vision

- What is a feature?
 - Location of sudden change
- Why use features?
 - Information content high
 - Invariant to change of view point, illumination
 - Reduces computational burden

What Makes For Good Features?

ENEZI

- Invariance
 - View point (scale, orientation, translation)
 - Lighting condition
 - Object deformations
 - Partial occlusion
- Other Characteristics
 - Uniqueness
 - Sufficiently many
 - Tuned to the task

Edges

FOSCAR

- Corners and Junctions
- Texture
- Intensity gradients (distribution of ambient light)
- Correspondence of features across multiple images
 - Stereo
 - Flow
- First we will stay with features on a single image
- Goal: Define techniques that will "filter" out regions that have these features, and allow us to ignore most of the pixels.
- Use these features in higher level vision

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Edges for inference

- Edges in an image have many causes
- An edge presents an opportunity to infer
- Looking at edges reduces information required
 - Look at a few pixels in a binary image as opposed to all pixels in a grayscale image
- Biological plausibility

CA' FOSCAR

ENEZIA

- Initial stages of mammalian vision systems involve detection of edges and local features

What Causes an Edge?

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

Edge detection

- How can you tell that a pixel is on an edge?
 - 1.Detection of short linear edge segments (edgels)
 - 2.Aggregation of edgels into extended edges
 - 3. Possibly combine the edges

- Edgel detection
 - Difference operators (linear filters)
 - Parametric-model matchers

2D edge detection filters

Detection By Thresholding

Original image (Lena)

Norm of the gradient

Thresholding

•If the threshold is too high, important edges may be missed

•If the threshold is too low, noise may be mistaken for a genuine edge

Marr-Hildreth Algorithm

- UNIVERSITÀ CA' FOSCARI V E N E Z I A
- Marr e Hildreth (1980) opted for a Laplacian of a Gaussian (LoG) filter
 - Edges correspond to maxima of the fisrst derivative and **zeroes of the second**
 - Isotropic → no need for several directional filters
 - Detect zero crossing of filtered image J $J = \nabla^2 G_\sigma \ast I$
- Scale parameter σ related to detail

Laplacian of Gaussian

Difference of Gaussian

Original

Smoothed

Smoothed - Original

- Canny tried to find the optimal edge detector, assuming a perfect step edge in gaussian noise
 - Optimal means

CA' FOSCAR

ENEZI

- Good Detection it should mark all the edges and only all the edges
- Good Localisation the points marked should be as close to the real edge as possible
- Minimal Response each edge should be reported only once
- Canny used the Calculus of Variations
 - finds the function which best satisfies some functional

Given a filter *f*, define the two objective functions:
Λ(*f*) large if *f* produces good localization
Σ(*f*) large if *f* produces good detection (high SNR)

INIVERSIT

CA' FOSCAR

VENEZI

• Problem: Find a family of filters *f* that maximizes the compromise criterion $\Lambda(f)\Sigma(f)$

under the constraint that a single peak is generated by a step edge

Solution: Unique solution, a close approximation is the Gaussian derivative filter!

CA' FOSCARI

VENEZIA

The optimal detector was described by sum of 4 exponential terms, but is very closely approximated by the 1st derivative of a Gaussian

Gives a cleaner response to a noisy edge than more square operators

□Canny also introduced thresholding with hysteresis

CA' FOSCARI

VENEZIA

The optimal detector was described by sum of 4 exponential terms, but is very closely approximated by the 1st derivative of a Gaussian

Gives a cleaner response to a noisy edge than more square operators

□Canny also introduced thresholding with hysteresis

Steps:

- 1. Apply derivative of Gaussian
- 2. Non-maximum suppression
 - Thin multi-pixel wide "ridges" down to single pixel width
- 3. Linking and thresholding
 - Low, high edge-strength thresholds
 - Accept all edges over low threshold that are connected to edge over high threshold

Non-Maximum Supression

Non-maximum suppression:

Select the single maximum point across the width of an edge.

Non-Maximum Supression

Assume the marked point is an edge point.

Take the normal to the gradient at that point and use this to predict continuation points (either r or s).

Hysteresis

The industry standard thresholding method

- apply an upper threshold T_{high}
- follow edges until they fall below a lower threshold T_{low}

Allows a band of variation, but assumes continuous edges

User still selects parameters, but its easier, less precise

Canny's main contribution is an understanding of why the method works - a Computational Theory of Edge Detection

Why is Canny so Dominant

- Still widely used after 20 years.
 - Theory is nice (but end result same).
 - Details good (magnitude of gradient).
 - Hysteresis an important heuristic.
 - Code was distributed.
 - Perhaps this is about all you can do with linear filtering.

Example

Edge Linking

c d FIGURE 10.16 (a) Input image. (b) G_y component of the gradient. (c) G_x component of the gradient. (d) Result of edge linking. (Courtesy of Perceptics Corporation.)

a b

Finding lines in an image

Option 1:

- Search for the line at every possible position/orientation
- What is the cost of this operation?

Option 2:

- Use a voting scheme: Hough transform

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - -given a set of points (x,y), find all (m,b) such that y = mx + b

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:

-given a set of points (x,y), find all (m,b) such that y = mx + b

- What does a point (x_0, y_0) in the image space map to?
 - A: the solutions of $b = -x_0m + y_0$
 - this is a line in Hough space

' FOSCAI

ENEZI

Typically use a different parameterization

- d is the perpendicular distance from the line to the origin θ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

- Initialize H[d, θ]=0
- for each edge point I[x,y] in the image
 - for θ = 0 to 180

CA' FOSCAR

ENEZI

- $d = x\cos\theta + y\sin\theta$
- H[d, θ] += 1
- Find the value(s) of (d, θ) where H[d, θ] is maximum
- The detected line in the image is given by

What's the running time (measured in # votes)?

Extension 1: Use the image gradient

- same
- for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y) H[d, θ] += 1

- same

IVERSI

A' FOSCAR

ENEZI

same

What's the running time measured in votes?

Extension 2

- give more votes for stronger edges

Extension 3

- change the sampling of (d, θ) to give more/less resolution

Extension 4

- The same procedure can be used with circles, squares, or any other shape